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ABSTRACT OF THESIS

3D RECONSTRUCTION FROM STEREO/RANGE IMAGES.

3D reconstruction from stereo/range image is one of the most fundamental and extensively

researched topics in computer vision. Stereo research has recently experienced somewhat of a new

era, as a result of publically available performance testing such as the Middlebury data set, which

has allowed researchers to compare their algorithms against all the state-of-the-art algorithms. This

thesis investigates into the general stereo problems in both the two-view stereo and multi-view stereo

scopes.

In the two-view stereo scope, we formulate an algorithm for the stereo matching problem with

careful handling of disparity, discontinuity and occlusion. The algorithm works with a global match-

ing stereo model based on an energy minimization framework. The experimental results are evaluated

on the Middlebury data set, showing that our algorithm is the top performer. A GPU approach

of the Hierarchical BP algorithm is then proposed, which provides similar stereo quality to CPU

Hierarchical BP while running at real-time speed. A fast-converging BP is also proposed to solve the

slow convergence problem of general BP algorithms. Besides two-view stereo, efficient multi-view

stereo for large scale urban reconstruction is carefully studied in this thesis. A novel approach for

computing depth maps given urban imagery where often large parts of surfaces are weakly textured

is presented. Finally, a new post-processing step to enhance the range images in both the both the

spatial resolution and depth precision is proposed.
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Chapter 1

Introduction

The main purpose of this thesis is to study the methodologies of automatically computing a

three-dimensional reconstruction of the scene given two or multiple images taken from different

viewpoints of the scene. The methodologies are in general called Shape from X in the literature,

where X stands for various cues such as motion, shading, textures, lasers, structured light, focus, line

drawings, etc. It is also possible to fuse different cues within a shape from X algorithm to enhance

robustness. This thesis focus on 3D reconstruction problems belonging to the category shape from

motion or structure from motion from a purely geometric viewpoint. In the thesis, the majority of

the scene is rigid, which means that either the scene has to be rigid or the images should be taken

at the same time.

This thesis is focus on automatic shape from motion, (also call 3D reconstruction from motion)

and is organized in the way of solving the problem from easy to hard: Chapter 2 presents a novel

stereo algorithm with top quality performance but time consuming within the two-view stereo scope.

To accelerate the speed, a real-time hierarchical BP approach is proposed in Chapter 3. Chapter 4

further investigates into the problem of automatic 3D reconstruction from multi-view stereo images.

A stereo pipeline that is able to handle large weakly-textured areas while running at near real-time

speed is presented. It uses an approximate but much faster stereo algorithm of the one presented in

Chapter 2. Finally, a new post-processing step to enhance the range images in both the both the

spatial resolution and depth precision is presented in Chapter 5.

1. Two-view reconstruction: Stereo Matching with Color-Weighted Correlation, Hierarchical Be-

lief Propagation and Occlusion Handling

In this chapter, we formulate an algorithm for the stereo matching problem with careful han-

dling of disparity, discontinuity and occlusion. The algorithm works with a global matching

stereo model based on an energy-minimization framework. The global energy contains two

terms, the data term and the smoothness term. The data term is first approximated by a

color-weighted correlation, then refined in occluded and low-texture areas in a repeated appli-

cation of a hierarchical loopy belief propagation (BP) algorithm. The experimental results are

evaluated on the Middlebury data set, showing that our algorithm is the top performer.

2. Two-view reconstruction: Real-time Global Stereo Matching Using Hierarchical Belief Propa-

gation

In this chapter, we present a belief propagation based global algorithm that generates high

quality results while maintaining real-time performance. To our knowledge, it is the first BP

based global method that runs at real-time speed. Our efficiency performance gains mainly

from the parallelism of graphics hardware,which leads to a 45 × speedup compared to the

6
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CPU implementation. To qualify the accuracy of our approach, the experimental results are

evaluated on the Middlebury data sets, showing that our approach is among the best (ranked

first in the new evaluation system) for all real-time approaches. In addition, since the running

time of general BP is linear to the number of iterations, adopting a large number of iterations

is not feasible for practical applications. Hence a novel approach is proposed to adaptively

update pixel cost. Unlike general BP methods, the running time of our proposed algorithm

dramatically converges.

3. Multi-view Stereo: Near Real-time Robust Plane-fitting Stereo for Weakly-Textured Urban

Imagery

There is a growing interest in automatic 3D reconstruction of large scale scenes, especially

for urban environments. Because of the huge amount of video data associated with capturing

these scenes, a fast stereo algorithm is required. While several state-of-the-art real-time/near

real-time stereo algorithms provide accurate 3D reconstructions for well-textured scenes, most

of them fail for surface parts that are weakly-textured. In this chapter, we develop a stereo

pipeline that is able to handle this problem while running at near real-time speed, more specif-

ically around 8 frames per second for an image resolution of 512×384 and 48 depth hypotheses.

Our stereo pipeline segments the image via a novel real-time color segmentation algorithm;

each segment is subsequently fitted to a plane and refined using consistency constraints. To

further improve the quality of our stereo algorithm, we integrated BP algorithm to correct po-

tential errors caused by plane-fitting due to non-robustness of color segmentation; however at

the cost of speed performance. By comparing the two proposed stereo approaches with a local

window-based approach we show that the proposed algorithms perform very well in weakly-

textured areas while maintaining a good speed performance. 100× with a single reference

image.

4. Reconstruction from Range image: Spatial-Depth Super Resolution for Range Images

We present a new post-processing step to enhance the resolution of range images. Using one or

two registered and potentially high-resolution color images as reference, we iteratively refine the

input low-resolution range image, in terms of both its spatial resolution and depth precision.

Evaluation using the benchmark Middlebury data set shows across-the-board improvement for

sub-pixel accuracy. We also demonstrated its effectiveness for spatial resolution enhancement

up to 100× with a single reference image.

7



www.manaraa.com

Chapter 2

Two-View Stereo: Stereo Matching with Color-Weighted Correlation, Hierarchical

Belief Propagation and Occlusion Handling

2.1 Introduction

Stereo is one of the most extensively researched topics in computer vision. Stereo research has

recently experienced somewhat of a new era, as a result of publically available performance testing

such as the middlebury data set [42], which has allowed researchers to compare their algorithms

against all the state-of-the-art algorithms.

In this chapter, we describe our stereo algorithm, which is currently evaluating as the top

performer on the middlebury data set. The algorithm springs from the popular energy minimization

framework that is the basis for most of the algorithms on the middlebury top-list, such as graph

cuts [10, 34] and belief propagation [48, 47]. In this framework, there is typically a data term and

a smoothness term, where the data term consists of the matching error implied by the extracted

disparity map, and the smoothness term encodes the prior assumption that world surfaces are

piecewise smooth.

However, the algorithm presented in this chapter departs somewhat from the normal frame-

work, in that in the final stages of the algorithm, the data term is updated based on the current

understanding of which pixels in the reference image are occluded or unstable due to low texture.

The chapter is organized as follows: Section 2.2 gives a high-level overview of the approach. In

Section 2.3 we then give the detailed equations for all the building blocks. Section 2.4 reports results

supporting the claims that the algorithm is currently the strongest available on the middlebury data

set. Section 2.5 concludes.

2.2 Overview of the Approach

The algorithm can be partitioned into three blocks, initial stereo (Figure 2.1), pixel classification

(Figure 2.2) and iterative refinement (Figure 2.3). In the initial stereo, see Figure 2.1, the correlation

volume is first computed. A basic way to construct the correlation volume is to compute the absolute

difference of luminances of the corresponding pixels in the left and right images, but there are many

other methods for correlation volume construction. For instance, Sun et al. [48] use Birchfield and

Tomasi’s pixel dissimilarity [8] to construct the correlation volume, and Felzenszwalb [18] suggests

to smooth the image first before calculating the pixel difference. In this work, we are using color-

weighted correlation to build the correlation volume, in a similar manner as was recently described

by Yoon and Kweon [59]. The color-weighting makes the match scores less sensitive to occlusion

boundaries by using the fact that occlusion boundaries most often cause color discontinuities as well.

The initial stereo is run in turn with both the left and the right image as reference images. This
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is done just to support a subsequent mutual consistency check (often called left-right check) that

takes place in the pixel classification block. Functions EL
S and ER

S defining the smoothness costs

in the left and right reference images, respectively, are determined based on the color gradients in

the input images. The left and right smoothness costs and the left and right correlation costs are

then optimized using two separate hierarchical belief propagation processes. The hierarchical belief

propagation is performed in a manner similar to Felzenszwalb [18], resulting in the initial left and

right disparity maps D
(0)
L and DR, respectively. The left disparity map is given an iteration index

i = 0 here, because it will be repeatedly refined in the iterative refinement module. The outputs

needed from the initial stereo are the initial left and right disparity maps D
(0)
L and DR, the left

correlation volume CL, the left image IL and smoothness cost EL
S .

Figure 2.1: The initial stereo module. Hierarchical belief propagation is run with both the left and

right images as reference image. The data term used is based on the color-weighted correlation, and

the smoothness term is computed based on the color gradients in the reference image, see the text

for more details.

In the pixel classification module, see Figure 2.2, pixels are given one out of three possible labels:

occluded, stable or unstable. The occluded pixels are the ones that fail the mutual consistency

check that is performed using the left and right disparity maps. The pixels that pass the mutual

consistency check are then labeled stable or unstable based on a confidence measure derived from

9
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the left correlation volume, which measures if the peak in the correlation score is distinct enough

that the local disparity can be considered stable. The output from the pixel classification module is

simply the pixel class membership.

Figure 2.2: The pixel classification module. Pixels are classified into occluded pixels, unstable pixels

and stable pixels. The occluded pixels are the ones that fail a mutual consistency check. The

unoccluded pixels are then further divided into stable and unstable pixels based on a confidence

measure derived from the correlation volume.

In the iterative refinement module, see Figure 2.3, the left smoothness cost EL
S , initial left

disparity map D
(0)
L , left image IL, pixel class membership and left correlation volume CL are all

used as input. The goal here is to propagate information from the stable pixels to the unstable

and the occluded pixels. This is done using color segmentation and plane fitting in a way inspired

by [50]. In our work, we use color segments extracted by mean shift [14] applied to the left input

image. In each color segment, the disparity values for the stable pixels are used in a plane fitting

procedure. Note that the disparity values used here are taken from the current hypothesis D
(i)
L

for the left disparity map. This disparity map is first initialized with the left disparity map D
(0)
L

given by the initial stereo module. The result of plane fitting within color segments is then used

together with the pixel class membership and the left correlation volume to give the current data

term hypothesis E
(i+1)
D , which is used with the original smoothness cost EL

S in hierarchical belief

propagation. Effectively, the plane fitted depth map is used as a regularization for the new disparity

estimation. The hierarchical belief propagation yields the updated disparity map hypothesis D
(i+1)
L ,

which is iteratively fed back into the plane fitting.

10
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Figure 2.3: The iterative refinement block. The goal is to propagate information from the stable

pixels to the unstable and the occluded pixels. Mean shift color segmentation is used to derive

segments. Within each segment plane fitting is then applied to the stable pixels, using the depth

values from the current disparity map hypothesis. The result D
(i)
pf from the plane fitting is then used

together with the correlation volume and the pixel class membership to produce a new approximation

E
(i+1)
D of the data term. The data term is used with the original smoothness term in another round

of hierarchical belief propagation. This gives a new disparity map hypothesis D
(i+1)
L , which is fed

back into the process.

2.3 Detailed Description

In this section, we give a more detailed description of the building blocks outlined above. The

order of description follows the above outline through Figures 2.1,2.2 and 2.3.

2.3.1 Initial Stereo

The main building blocks of the initial stereo module, see Figure 2.1, are color-weighted corre-

lation, smoothness cost definition and hierarchical belief propagation.

The objective of the color-weighted cost aggregation is to initialize a reliable correlation volume.

To obtain more accurate results on both smooth and discontinuous regions, an appropriate window

should be selected adaptively for each pixel during the cost aggregation step. That is, the window

should be large enough to cover sufficient area in textureless regions, while small enough to avoid
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crossing depth discontinuities. Many methods [30, 11, 51, 52, 26, 9] have been proposed to solve this

ambiguity problem.

In our implementation, we use an amended version of the color based weight approach proposed

recently by Yoon and Kweon [59]. In this method, instead of finding an optimal support window,

adaptive support-weights are assigned to pixels in some large window with side-length αcw based

both on the color proximity and the spatial proximity to the pixel under consideration (the central

pixel of the support window).

In Yoon and Kweon’s work, the similarity between two pixels within the support window is

measured in the CIELab color space. Our approach however simply measures it in the RGB color

space. Due to our post-refinement process, this change does not prevent us from achieving state-

of-the-art results. However, instead of using a raw pixel difference, we use Birchfield and Tomasi’s

pixel dissimilarity [8].

The color difference ∆xy between pixel x and y (in the same image) is expressed as

∆xy =
∑

c∈{r,g,b}
|Ic(x)− Ic(y)|, (2.1)

where Ic is the intensity of the color channel c. The weight of pixel x in the support window of y

(or vice versa) is then determined using both the color and spatial differences as

wxy = e−(β−1
cw ∆xy+γ−1

cw ‖x−y‖2), (2.2)

where βcw and γcw are parameters determined empirically.

The data term is then an aggregation with the soft windows defined by the weights, as

C(xL,xR)=

∑
(yL,yR)∈WxL

×WxR
wxLyL

wxRyR
d(yL,yR)

∑
(yL,yR)∈WxL

×WxR
wxLyLwxRyR

, (2.3)

where Wx is the support window around x and d(yL,yR) represents Birchfield and Tomasi’s pixel

dissimilarity, xL and yL are pixels in the left image IL, xR and yR are pixels in the right image IR.

The smoothness cost should be decreased at depth edges, since these are likely to coincide with

color edges, the luminance difference

δxy = |I(x)− I(y)| (2.4)

between neighboring pixels x and y is used to decrease the cost. The difference δxy is normalized

to span the interval [0, 1]. The average over the whole frame is then subtracted out to yield the

normalized difference δnorm. Defining the cost coefficient

ρs = 1− δnorm, (2.5)

the cost assigned to the pixel pair (x,y) is then

ES = ρbpρs|D(x)−D(y)|, (2.6)
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where ρbp is set empirically and D(x) and D(y) are the disparities of x and y.

Hierarchical loopy belief propagation [18] is employed to realize the iterative optimization that

trades off between the data and the smoothness term. The difference between the hierarchical BP

and general BP is that the hierarchical BP works in a coarse-to-fine manner, first performing BP at

the coarsest scale, then using the output from the coarser scale to initialize the input for the next

scale. Two main parameters sbp and nbp define the behavior of this hierarchical belief propagation

algorithm, sbp is the number of scales and nbp is the number of iterations in each scale.

2.3.2 Pixel Classification

The main building blocks of the pixel classification, see Figure 2.2, are the mutual consistency

check and the correlation confidence measure.

The mutual consistency check requires that on the pixel grid that the left and right disparity

maps are computed, they are perfectly consistent, i.e. that

DL(xL) = DR(xL −DL(xL)) (2.7)

for a particular pixel xL in the left image. If this relation does not hold, the pixel is declared occluded.

If it does hold, the pixel is declared unoccluded and passed on to the correlation confidence measure.

The correlation confidence is measuring how distinct the best peak in the correlation is for a

particular pixel. Assume that the cost for the best disparity value is C1, and the cost for the second

best disparity value is C2. The correlation confidence is then

|C1 − C2

C2
|. (2.8)

If it is above a threshold αs the pixel is declared stable, otherwise unstable.

2.3.3 Iterative Refinement

The main building blocks of the iterative refinement, see Figure 2.3, are the mean shift color

segmentation, plane fitting within segments, the data term formulation, and another hierarchical

belief propagation process identical to the previous ones.

The mean shift color segmentation is performed as described in [14].

The plane fitting is performed in the disparity space, and is applied per segment. This is done

robustly using acm-1981-fischler [20] on the disparity values of the stable pixels only. The output

D
(i)
pf from this step is computed individually for each segment and depends on on the ratio of stable

pixels of this segment. If the ratio of stable pixels is above a parameter value ηs, this means most

of the current disparity values for the segment are approximated accurately so we use D
(i)
L for the

stable pixels, and for the unstable and occluded pixels we use the result of the plane fitting. If the

ratio of stable pixels is below ηs we use the result of the plane fitting for all pixels.
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Mean Shift αms βms γms

Segmentation 7 6 50
Color-Weigh. αcw βcw γcw

Correlation 33 10 21
Hierarchical αbp ηbp ρbp λbp sbp nbp

BP nd/8 2c 1 0.2 5 5
Iterative κs κu κo αs ηs ns

Refinement 0.05 0.5 2 0.04 0.7 5

Table 2.1: Parameter settings used throughout. nd is the number of disparity levels. c is the average

of the values in the correlation volume.

The data term is formulated differently for the occluded, unstable and stable pixels. The

absolute difference

ai = |D(i+1)
L −D

(i)
pf | (2.9)

between the new disparity map D
(i+1)
L and the plane fitted disparity map D

(i)
pf is used to regularize

the new estimation process. The difference is used to define the data term at the occluded, unstable

and stable pixels as

E
(i+1)
D = κoai, (2.10)

E
(i+1)
D = CL + κuai, (2.11)

E
(i+1)
D = CL + κsai, (2.12)

respectively. The constants κo, κu, κs reflect the fact that the unstable and occluded pixels need the

most regularization.

2.3.4 Parameter Settings

In this section, we provide all the parameter settings used in the algorithm. The same parameter

settings were used throughout.

The parameters are shown in Table 2.1 and separated into 4 parts: 3 parameters (αms, βms,

γms) for the mean shift segmentation, 3 parameters (αcw, βcw, γcw) for color-weighted correlation,

6 parameters (αbp, ηbp, ρbp, λbp, sbp, nbp) for hierarchical belief propagation, and 6 parameters (κs,

κu, κo, αs, ηs, ns ) for iterative refinement.

For mean shift color segmentation, αms is spatial bandwidth, βms is color bandwidth, and γms

is the minimum region size.

For color-weighted correlation αcw is the size of the support window and βcw and γcw are defined

in Equation (2.2).

For hierarchical BP, αbp and ηbp are truncations of the smoothness and data terms, respectively.

The parameter ρbp is the constant weight factor applied to the smoothness term and λbp is a constant

weight factor applied to the data term after the truncation. The parameter sbp is the number of

scales and nbp is the number of iterations, as defined in Section 2.3.1.
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Parameters κs, κu and κo for the iterative refinement are defined in Equations (2.10), (2.11) and

(2.12), respectively. αs is the threshold on correlation confidence defined in Section 2.3.2. Parameter

ηs is related to the plane fitting process, as defined in Section 2.3.3. The parameter ns is the number

of iterations for the iterative refinement process.

2.4 Experimental Results

Avg. Tsukuba Venus Teddy Cones

Algorithm Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Our Algorithm 1.3 0.88 1 1.29 1 4.76 1 0.14 1 0.60 2 2.00 1 3.55 1 8.71 2 9.70 1 2.90 1 9.24 2 7.80 1

Segm+visib [9] 3.3 1.30 5 1.57 2 6.92 6 0.79 4 1.06 3 6.76 6 5.00 2 6.54 1 12.3 2 3.72 3 8.62 1 10.2 4

SymBP+occ [47] 3.4 0.97 2 1.75 3 5.09 2 0.16 2 0.33 1 2.19 2 6.47 4 10.7 3 17.0 4 4.79 7 10.7 6 10.9 5

AdaptWeight [59] 4.4 1.38 6 1.85 4 6.90 5 0.71 3 1.19 4 6.13 4 7.88 5 13.3 5 18.6 6 3.97 5 9.79 4 8.26 2

SemiGlob [26] 5.8 3.26 10 3.96 9 12.8 13 1.00 5 1.57 5 11.3 10 6.02 3 12.2 4 16.3 3 3.06 2 9.75 3 8.90 3

Table 2.2: Comparison of results on the middlebury data set. The numbers are the percentage of

pixels with misestimated disparities on the different subsets of the images. The subscript of each

number is the rank of that score. Our algorithm has rank 1 for most categories and rank 2 at worst.

This gives an average rank of 1.3.

We evaluate our algorithm on the middlebury data set and we show in Table 2.2 that our

algorithm outperforms all the other algorithms listed on the middlebury homepage. The result on

each data set is computed by measuring the percentage of pixels with an incorrect disparity estimate.

This measure is computed for three subsets of the image:

1. The subset of non-occluded pixels, denoted “nonoccl”.

2. The subset of pixels near the occluded regions, denoted “disc”.

3. The subset of pixels being either non-occluded or half-occluded, denoted “all”.

For the first two categories our algorithm takes the first place for all four test sets. For the third

category we take first or second place for all test sets. By consistently performing first or second on

all test subsets our average rank is 1.3.

In Figure 2.6 the results after different intermediate stages are shown. This provides a visual

explanation of how the different stages in the pipeline improves the results. For comparison we also

give the ground truth. The scores for the intermediate results are given in Figure 2.3 along with

D
(5)
L SPECIAL, which is the same as D

(5)
L except that we do not use the colors of the reference

image to define the smoothness cost, which has a strong impact on the Teddy and Cones data sets.

In Figure 2.4 and Figure 2.5, it is shown how an increased number of iterations in estimating

ED improves the result. Zero iterations in Figure 2.4 means that we use D
(0)
L , the initial disparity
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Figure 2.4: The iterated computations of E
(i+1)
D improves the result. In most cases one iteration is

enough for convergence. After five iterations, the result has always converged.

map. Based on this we chose to use five iterations in our method.

2.5 Conclusions

In this chapter, a stereo model based on energy minimization, color segmentation, plane fitting,

and repeated application of hierarchical belief propagation was proposed. Typically, one application

of the hierarchical belief propagation brings the error down close to its final value, so that the

algorithm could perhaps be used as a two step approach, where occlusions and untextured areas are

first detected and then filled in from neighboring areas.

The parameters provided constitute a good setting for the algorithm, but are not entirely opti-

mized. More studies are needed to fully understand the behavior of our algorithm. Our algorithm is

outperforming all other algorithms on the Middlebury data set, but there is space left for improve-

ment. For instance, in our algorithm, we only refined the disparity map for the reference image, but

[47] suggests that by generating a good disparity map for the right image, the occlusion constraints

can be extracted more accurately. Another question that was left for further study is how to use
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Figure 2.5: Pixels with incorrect disparity for the ”Cones” data set. On the first row the results

after 1 and 2 iterations are shown and on the second row the results after 3 and 5 iterations are

shown.

the algorithm in a multi-view setting.
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Initial Disp. (D(0)
L ) Plane Fitting (D(4)

pf ) Final Disp. (D(5)
L ) Ground Truth

Figure 2.6: Intermediate results from our algorithm for the four different test sets compared to the

ground truth. In the first column the output of the initial BP is shown. This result is denoted D
(0)
L

in Figure 2.2 and Figure 2.3. In the second column the results after fitting planes to the regions from

the color segmentation are shown. These are denoted by D
(4)
pf in Figure 2.3. In the third column

the final result of our algorithm is shown. These results are denoted by D
(5)
L in Figure 2.3.

Avg. Tsukuba Venus Teddy Cones

Algorithm Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc

D
(0)
L

5.7 1.18 2 3.24 8 5.82 2 0.94 4 2.63 10 11.5 10 7.75 4 16.9 7 15.4 2 4.47 6 13.5 9 10.4 4

D
(4)
pf

3.2 2.60 9 2.98 8 7.31 6 0.13 1 0.46 2 1.79 1 3.93 1 8.92 2 9.97 1 3.50 2 9.41 2 9.07 3

D
(5)
L

1.3 0.88 1 1.29 1 4.76 1 0.14 1 0.60 2 2.00 1 3.55 1 8.71 2 9.70 1 2.90 1 9.24 2 7.80 1

D
(5)
L

SPECIAL 1.3 0.88 1 1.30 1 4.77 1 0.14 1 0.60 2 1.95 1 3.71 1 9.20 2 10.3 1 3.07 2 9.33 2 8.17 1

Table 2.3: Intermediate results from our algorithm verified with the ground truth. The first three

rows in the table corresponds to the first three rows in the above figure. The last row is the same

as D
(5)
L except that we do not use the colors of the reference image to define the smoothness cost.
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Chapter 3

Two-View Stereo: Real-time Global Stereo Matching Using Hierarchical Belief

Propagation

3.1 Introduction

Stereo vision has traditionally been one of the most extensively investigated topics in computer

vision, and is still attracting the attention of many researchers. As a consequence, a variety of

approaches have been proposed and an excellent survey of stereo algorithms can be found in [43].

In general, stereo algorithms can be categorized into two major classes: local methods and global

methods. Local algorithms, which are based on correlation can have very efficient implementation

that are suitable for real-time application [24, 52]. The central problem of local window-based

algorithms is how to determine the size and shape of the aggregation window. That is, a window

must be large enough to cover sufficient intensity variation while small enough to avoid crossing

depth discontinuities for reliable estimation. This inherent ambiguity causes problems such as noisy

disparities in textureless region and blurred object boundaries.

Global methods make explicit smoothness assumptions of the disparity map and minimize some

cost function. A classic category of global methods is Dynamic Programming (DP) based [38, 32].

DP technique can offer optimized solution for independent scanlines in an efficient manner. Due to

DP’s one dimensional optimization solution and efficient performance, it is the algorithm of choice

for many real-time stereo applications [54, 23, 21]. The major problem of DP is that inter-scanline

consistency cannot be well enforced, leading to the well-known ”streaking” artifacts. Although new

algorithms [32, 53] have been proposed to reduce the effect, it can hardly be eliminated. Recently,

new global optimization methods such as Belief Propagation (BP) and Graph cut (GC) have at-

tracted much attention. Unlike DP, these methods [48, 47, 34, 10] enforce the optimization in two

dimensions, i.e. the entire image. Although some of the most impressive stereo results are obtained,

both BP and GC are typically computionally expensive and therefore real-time performance has

never been achieved. Recently, Felzenszwalb et al. proposed an efficient BP algorithm [18] uses a

hierarchical approach for reducing the complexity. However, it still requires about one second to

compute a small image (i.e. 384× 288) and cannot achieve real-time performance yet.

In this chapter, we propose a real-time belief propagation stereo approach. This algorithm is

based on a global energy-minimization framework which contains two terms, the data term and

smoothness term. Thus our method can be treated as a two-step algorithm: the construction of the

data term and the iterative optimization of the smoothness term. The second step is the essential

part of BP, while at the same time, is commonly believed to be the bottleneck of the practical use of

the algorithm. Hence, the main contributions of this chapter are: first, providing a good accelerator

for all the BP based algorithms; second, providing a high quality real-time stereo matching approach.

The rest of this chapter is organized as follows. Section 2 gives a description of our stereo
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matching approach. In Section 3, we propose a fast-converging BP algorithm that greatly reduce

the complexity when a large number of iterations are used. Section 4 details how our algorithm is

implemented in GPU to gain performance improvement. Our experimental results are presented in

Section 5 and in Section 6 we conclude.

3.2 Approach Description

The algorithm can be partitioned into two blocks: correlation volume computation and hierar-

chical BP implementation, which correspond to the two terms of the global energy: the data term

ED and the smoothness term ES respectively.

E(d) = ED(d) + ES(d); (3.1)

The correlation volume module constructs the data term, and the hierarchical BP module iteratively

updates the smoothness term to minimize the global energy.

3.2.1 Correlation Volume Computation

In the correlation volume computation module, we compute the matching cost in a similar way

as the Birchfield and Tomasi’s pixel dissimilarity [8], that is for each disparity value, five matching

costs are compute. In order to reduce noise, the matching cost is passing through a gaussian filter

with σ one pixel. The minimum of the matching costs is selected and compared with a threshold

T , multiply the smaller one with a weighting parameter η to get the data term and send it into the

hierarchial BP module.

3.2.2 Hierarchical BP

The basic idea of loopy belief propagation algorithm [48] is first gathering information from a

pixel’s neighbors and incorporate the information to update the smoothness term between the current

pixel and its neighboring pixels, and iteratively optimizing the smoothness term to achieve global

energy minimization. This is different from the scanline optimization algorithms which only enforce

the smoothness along each scanline, because in these algorithms, the smoothness cost information

propagates only along the scanline, while in global algorithms like loopy believe propagation and

graph cuts algorithms, the smoothness cost information is propagating across the whole image.

Figure 3.1 provides an example of how to update the smoothness term E
(4)
S,X between pixel X

and one of its neighbors Y4. The first step is using Equation 3.2 to incorporate the data term of

X (ED,X) with the smoothness term of its other neighboring pixels to generate a new jump cost

M
(4)
S,X. In this chapter, we define this cost as multi-pass jump cost. The new smoothness term

E
(4),new
S,X (d) between X and its neighbor Y4 is then updated by computing the smallest jump cost
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Figure 3.1: Belief propagation algorithm. In the left figure, pixel X has four neighbors Y1, Y2, Y3,

Y4, there’s a smoothness term between pixel X and each of its neighboring pixels. The right figure

provides an example showing how to update the smoothness term E
(4)
S,X between pixel X and one of

its neighbors Y4.

using Equation 3.3.

M
(4)
S,X(dx) = ED,X(dx) + E

(3),old
S,Y1

(dx) + E
(4),old
S,Y2

(dx) + E
(1),old
S,Y3

(dx), (3.2)

E
(4),new
S,X (d) = arg min

dx

(M (4)
S,X(dx) + Ψ(dx, d)), (3.3)

we define Ψ(dx, d) as single-pass jump cost between two neighboring pixels, it is linear to the

absolute difference of the disparities of pixel X and Y4. However, in order to increase the robustness

to outliers, a threshold λ is added as shown in Equation 3.4.

Ψ(dx, d) = min(λ, ρ | dx − d |), (3.4)

The smoothness term (ES) is iteratively updated which results in the minimization of the global

energy E:

E(d) =
∑

X

EX(d) =
∑

X

ED,X(d) + E
(3)
S,Y1

(d) + E
(4)
S,Y2

(d) + E
(1)
S,Y3

(d) + E
(2)
S,Y4

(d), (3.5)

The global energy converges after a certain number of iterations. The disparity value on each pixel

X is calculated as following:

DX = arg min
d

(EX(d)), (3.6)

The general loopy belief propagation algorithm is too slow to be practically used while achieving

very good result, not only because the algorithm itself is complicated, but also because a certain

number of iterations are required before the algorithm converges. Felzenszwalb [18] provides a hier-

archical algorithm which runs much faster than the previous algorithms while yielding comparable

accuracy. The main difference between the hierarchical BP and general BP is that hierarchical BP

works in a coarse-to-fine manner, first performing BP at the coarsest scale, then using the output

from the coarser scale to initialize the input for the next scale.
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Figure 3.2: Comparison of fast-converging BP and standard BP. The left figure provides the percent-

age of the non-converged pixels after every iteration, and the right figure provides the comparison of

the running time of fast-converging BP and Standard hierarchical BP algorithms. Both algorithms

are run on Tsukuba data set with the same number of iterations on all the four scales.

3.3 Fast-Converging BP

For standard BP algorithms, in order to achieve the best stereo results, a large number of

iterations are required to guarantee the convergence. However, since the running time is linear to

the number of iterations, large number of iterations will greatly hurt the practical application of BP

algorithms.

Actually, there are lots of redundant computations involved in standard BP. In essence, by

only updating pixels that have not yet converged, fast-converging BP removes those redundant

computations while achieving the same accuracy as standard BP.

In detail, the new smoothness term of one of the pixels in the graph is updated according to its

own data term (ED,X), the previous smoothness term of its four neighboring pixels (E(i),old
S,Yi

), and

the single-pass jump cost function Ψ. Since the data term and the single-pass jump cost stay

unchanged, they can be treated as fixed parameters, and the updated smoothness term (E(i),new
S,X ) of

a pixel X in the graph thus becomes a function of variables containing only the previous smoothness

term of its four neighboring pixels, for instance:

E
(4),new
S,X = f(E(3),old

S,Y1
(dx), E(4),old

S,Y2
(dx), E(1),old

S,Y3
(dx)), (3.7)

As a result, before updating the smoothness term of a pixel X at iteration i, check whether the

smoothness term of its four neighboring pixels at iteration i− 1 and at iteration i− 2 are equivalent

or not. If the smoothness terms are the same, it is not necessary to update the smoothness term of

pixel X.

Figure 3.2 shows that after several numbers of iterations, most of the pixels on the graph

converge. The fast-converging BP algorithm thus ignores these pixels, the updating scheme is only
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applied to the non-converged pixels, which greatly decrease the running time of BP approaches with

large number of iterations. Figure 3.2 also shows that the running time of the standard BP is linear

to the number of iterations while the running time of the fast-converging BP dramatically converges.

We have successfully implemented this fast-converging BP approach on CPU, and are looking

forward to implementing it on GPU. The experiment results provided in Figure 3.2 are based on

CPU implementation.

3.4 GPU Implementation

We have implemented both the first (correlation volume computation) and second step (hierar-

chical BP) on graphics hardware to facilitate real-time computation. The GPU implementation of

the first step is very simple, so we only focus on the second step.

In our implementation, there are four scales in the hierarchical BP, and the main process for

each scale are the same. The updating scheme for each scale are summarized in Algorithm 3.4. For

each scale, eight textures are used to store the smoothness term. The old smoothness term generated

in the previous iteration is stored in four of the textures (E(i)
S,old, i = 1, 2, 3, 4), the other four textures

are used to store the updated smoothness term (E(i)
S,new). For the coarsest scale, before the iteration

begins, initialize E
(i)
S,old with all zeros, as to the other scales, E

(i)
S,old is initialized as Algorithm 3.4

describes. At the beginning of each iteration, compute multi-pass jump cost M
(i)
S from the data

term and the previous smoothness term as described in the Approach Section. The next step is

to update the smoothness term using Equation 3.3. The complexity of this problem is O(NR2
disp)

(NRdisp is the number of disparity levels), but the updating scheme provided in Algorithm 3.4

reduces the complexity to O(N). Finally, normalize E
(i)
S,new, such that

∑N−1
d=0 E

(i)
S,new(d) = 0.

When the iteration is completed in the fine scale, uses Equation 3.5 and 3.6 to create the

disparity map.

3.5 Experimental Results

We tested our real-time BP algorithm on a 3 GHz PC running Direct3D 9.0. The GPU

is a Geforce 7900 GTX graphics card with 512M video memory from NVIDIA. All shaders are

implemented using HLSL and complied using pixel shader 3.0 profile. The following experiments

are conducted to evaluate both the quality and efficiency performance of our algorithm. The same

parameter settings were used throughout the experiments. Two parameters T = 30 and η = 0.15

are used in the correlation volume computation module, another two parameters are involved in the

calculation of the single-pass jump cost: ρ and λ. ρ is set to 1.0, and λ is determined by the the

number of disparity levels (NRdisp) of the input data set: λ = (2.0×NRdisp)/16. 16 is the number

of disparity levels of the Tsukuba data set. In this chapter, we implement hierarchical BP in GPU

with four scales, and the typical iterations for each scale are (5, 5, 10, 4), from coarse-to-fine scale.
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Algorithm 1 Updating the Smoothness Term on GPU

Require: E
(i),coarse
S,old , i = 1, 2, 3, 4.

1. Initialize E
(i),fine
S,old : E

(i),fine
S,old (X) = E

(i),coarse
S,old (X/2);

2. Initialize N with the number of iterations of the current scale.

3. repeat

4. -Compute M
(i)
S according to Equation 3.2;

5. -Compute the minimun of M
(i)
S for each pixels, plus it with the threshold λ

which is provided in Equation 3.4, save it as MINS ;

6. -Update E
(i)
S,new:

for d from 1 to NRdisp − 1:

M
(i)
S (d)=min(M (i)

S (d),M (i)
S (d− 1) + ρ);

for d from NRdisp − 2 to 0:

M
(i)
S (d)=min(M (i)

S (d),M (i)
S (d + 1) + ρ,MINS);

E
(i)
S,new = M

(i)
S ;

7. -E(i)
S,old = E

(i)
S,new;

8. -Normalize E
(i)
S,new, such that

∑N−1
d=0 E

(i)
S,new(d) = 0

9. -Decrease N by 1.

10. until N ≤ 0.

3.5.1 Quality Evaluation with Ground Truth

We first evaluate the reconstruction quality of our approach using the benchmark middlebury

stereo data set based on known ground truth. The new evaluation test data consists of four stereo

pairs within which ”Tsukuba” and ”Venus” are standard stereo data with slanted surfaces and up to

20 disparity levels, ”Teddy” and ”Cones” are both new adopted image pairs with more complicated

scene structure and much larger disparity ranges. We evaluate the numerical accuracy of the dense

disparity maps generated by our algorithm using the online system at [42]. The results from all test

images are shown in figure 3.3.

This quantitative evaluation confirms that, as demonstrated in Table 3.1, our real-time BP

performs as well as other global optimization approaches. Generally speaking, the overall per-

formance is ranked between the best belief propagation based algorithms which are the current
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Avg. Tsukuba Venus Teddy Cones
Algorithm Rank nonocc all nonocc all nonocc all nonocc allc
DoubleBP [56] 2.3 0.881 1.291 0.142 0.605 3.551 8.713 2.903 9.244

SymBP+occ [47] 5.1 0.972 1.755 0.163 0.332 6.476 10.74 4.7911 10.78

Our Algorithm 10.4 1.4910 3.4013 0.777 1.9011 8.7213 13.28 4.619 11.610

GC+occ [34] 11.5 1.194 2.019 1.6414 2.1913 11.216 17.416 5.3613 12.413

MultiCamGC [35] 12.0 1.275 1.998 2.7919 3.1317 12.017 17.617 4.8912 11.811

GC [43] 16.6 1.9412 4.1215 1.7916 3.4418 16.521 25.022 7.7017 18.218

Belief prop. [48] NA 1.15 NA 0.98 NA NA NA NA NA
HierarchicalBP [18] NA 1.86 NA 0.96 NA NA NA NA NA

Table 3.1: Performance comparison of the proposed method with other high-quality global opti-

mization approaches. This measure is computed for three subsets of the images,they are ”nonocc”:

the subset of non-occluded pixels, ”all”: pixels that are either non-occluded or half-occluded. The

subscript is the relevant rank of each item on the table. Note that since the old middlebury table

which contains several bp based stereo methods is no longer functional, we have collected the non-

occluded (overall) error rate of the shared test data ’Tsukuba’ and ’Venus’. Those numbers that are

not available due to this reason are labeled ”NA”.

state-of-the-art stereo algorithms and the Graph Cuts based algorithms. One thing worth noticing

is that most of these methods, such as [56, 47, 34], integrate multiple low-level visual cues (e.g.,

segmentation, edges, visibility testing) as either soft or hard constraints to improve stereo matching

while our approach works under a basic and clean probabilistic framework without any additional

information incorporated. Moreover, the iteration numbers used across all experiments is only 4.

Although increasing the number of iterations can produce stronger results simultaneously, we bal-

ance the quality and efficiency by not using too may iterations and our later experiments will show

this compensation does not prevent us from achieving satisfying results.

In addition, in terms of accuracy, Table 3.2 shows that our real-time BP outperforms all the

other methods that can achieve real-time or near real-time performance listed on the new middlebury

evaluation table. Since the old evaluation table at middlebury, which contains some algorithms that

aim real-time, is no longer functional, we collecte the non-occluded error percentage of the shared

test data ’Tsukuba’ and ’Venus’ and provide results in Table 2 for reference.

Avg. Tsukuba Venus Teddy Cones
Algorithm Rank nonocc nonocc nonocc nonocc
Our Algorithm 10.4 1.49 10 0.77 7 8.72 13 4.61 9

RealTimeGPU [54] 14.3 2.05 14 1.92 17 7.23 8 6.41 15

ReliabilityDP [23] 15.6 1.36 7 2.35 18 9.82 15 12.9 22

Realtime [25] NA 4.25 NA 1.32 NA NA NA
Realtime DP [21] NA 2.85 NA 6.25 NA NA NA
Max. surf. [46] NA 11.10NA 5.51 NA NA NA

Table 3.2: Performance comparison of the proposed method with other real-time approaches listed

on the Middlebury evaluation tables.
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Figure 3.3: Resulting disparity maps from the middlebury stereo data set. (top row) Ground truth;

(bottom row) Disparity maps generated from our method.

Figure 3.4: Two sample images and their corresponding disparity maps from our live system on a 3

GHz PC with a Geforce 7900 GTX graphics card from NVIDIA. Our system can reach 16 fps given

320× 240 input images and 16 disparity levels.

3.5.2 Live System and Efficiency Performance

We integrated our algorithm into a real-time stereo system with live video input. The stereo

pairs are rectified and with lens distortion removed. This pre-processing is implemented in the

GPU using texture-mapping functions. Figure 3.4 shows the results of applying our real-time BP

algorithm to some live images captured from our system. These real scene images are with resolution

320× 240 and 16 disparity levels. Note that the scene structures and object borders have been well

detected. The speed is about 16 fps for our live system.

To further evaluate the efficiency performance of our algorithm, we test our system against the

four middlebury test data under different configurations and summarize the results in Table 3.3.

Two characteristics of our real-time BP algorithm can be observed from the measurements. First,

by utilizing graphics hardware acceleration, we can achieve a speedup factor up to 45 compared to

its CPU counterpart. Second, the error percentage changed slightly with the increasing of iterations.

Using a few iterations are able to produce strong results. These two characteristics cooperatively
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explain why our algorithm is very suitable for real-time application.

Iteration MDE/Second Error(%) Avg.
(N) CPU GPU Tsukuba Venus Teddy Cones Rank
2 0.49 22.2 1.59 0.90 8.89 4.73 11.0
4 0.39 17.0 1.49 0.77 8.72 4.61 10.4
6 0.31 13.7 1.47 0.67 8.68 4.57 9.8
10 0.23 10.1 1.47 0.60 9.09 4.54 9.7

Table 3.3: Running time evaluation on the four new Middlebury stereo data. The speed and

overall error rate corresponding to different number of iterations are presented in the table. Speed

performance is measured by million disparity estimations per second (MDE/s). Here both the CPU

and GPU’s MDE/s values are calculated based on Tsukuba data set. Clearly GPU acceleration can

achieve a high speedup factor compared to the CPU implementation. In addition, iterations used

for each scale are (5, 5, 10, N), from coarse-to-fine scale. N is the variable provided in the table.

3.6 Discussion

In this chapter, a real-time stereo model based on hierarchical belief propagation was proposed,

which demonstrates that global optimization based stereo matching is possible for real-time appli-

cations. The whole algorithm design in this chapter is very clean and results in very high quality

stereo matching. We qualified the accuracy of the stereo results using the Middlebury benchmark,

which shows that our algorithm outperforms all the other real-time stereo algorithms.

Looking into the future, both the quality and the speed of the proposed real-time BP approach

can be improved. For the quality, more constraints and priors (e.g. edges, corners, junctions,

segmentation, visibility) can be incorporated; for the speed, in Section 3.3, we have proposed an

approach which allows large number of iterations to guarantee the convergence, for instance, the

running time of fast-converging BP with 100 iterations is even less than the running time for standard

BP with 5 iterations. We’re planning to transfer it to GPU in the near future. In addition, [18]

presented an approach which can decrease both the storage requirements and the running time by

a factor of two. Because for a bipartite graph, all the nodes can be separated into two clusters, for

each iteration, only one cluster’s smoothness term needs to be updated. We have implemented this

approach on CPU, and we would also like to implement this approach on GPU to improve the speed

up to a factor of two in the near future.
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Chapter 4

Multi-view Stereo: Near Real-time Robust Plane-fitting Stereo for Weakly-Textured

Urban Imagery

4.1 Introduction

This chapter presents a robust method for correcting textureless areas in stereo depth maps

using locally estimated planes. The approach is especially relevant to 3D urban reconstruction,

for which many areas in an image may contain planar objects. We designed our system with an

emphasis on performance in order to facilitate the computation of large reconstructions.

Urban mapping and reconstruction are topics extensively researched in many areas. Photogram-

metrists have long been able to map urban terrain and buildings using aerial and satellite imagery,

which is now widely available via commercial applications, such as Microsoft Virtual Earth and

Google Earth. Many groups have successfully created ground-based reconstructions using laser range

finders and cameras, see [22]. Within the scope of vision-only approaches, semi-manual reconstruc-

tions of facades can be created with a small number of images [16], while automatic reconstruction

has been accomplished to a degree using longer video sequences [4].

When creating reconstructions from video, small subsequences can be reconstructed via stereo

depth estimates, which are later combined into a larger reconstruction. While accurate depth esti-

mates are important for generating usable reconstructions, the best current algorithms run offline.

Since the number of depth maps necessary for reconstructing an urban area is typically high, allowing

individual estimates to run until some optimal convergence or otherwise execute for an arbitrarily

long time may not be feasible, so offline algorithms are not typically appropriate here. Several online

approaches also exist, often executing on graphics hardware or on low resolution images. However,

such approaches often fail in large textureless or weakly-textured regions, since stereo correspon-

dence is uninformative. Unfortunately, urban areas tend to have many such regions. In this chapter,

we propose a near real-time plane-fitting stereo pipeline and a BP-based plane-fitting stereo pipeline

to deal with this problem.

The plane-fitting stereo pipeline contains three modules: window-based multi-view stereo match-

ing, stereo fusion and plane-fitting refinement. To achieve high speed performance, a novel real-time

color segmentation approach is proposed in the last module. The BP-based plane-fitting stereo

pipeline contains three modules too, and the last two modules are the same as the plane-fitting

stereo pipeline. The first module is different in that after window-based stereo matching, a plane-

fitted depth map is created followed by a loopy belief propagation refinement. This helps correcting

potential errors caused by plane-fitting due to non-robustness of color segmentation.

We discuss previous work in Section 4.2. Section 4.3 provides an overview of the algorithm that

provides a basis for our approach. Sections 4.4 and 4.5 detail our improvements via plane fitting

and belief propagation, respectively. Results are shown in Section 4.6, and Section 4.7 concludes.
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4.2 Related Work

A survey of several classes of stereo algorithms is given in [43]. As stated in that paper,

local stereo algorithms are dependent on their aggregation windows. If a local algorithm encounters

a textureless area larger than the aggregation window, i.e. the depth estimate for a given pixel

has no unique support within a local region, the algorithm is guaranteed to fail. Moreover, most

real time algorithms are local, meaning that in weakly-textured environments, such algorithms will

produce large amounts of error. Global algorithms, such as graph cuts [10] and belief propagation

[33, 47, 48, 56, 57], have properties that can improve depth estimates in difficult environments. These

algorithms rely on minimization of some global cost function. In textureless areas, the minimization

tends to have a smoothing or blurring effect. Because of their iterative nature, they are typically too

slow for limited time frame applications. Yang etal [57] uses a few iterations of hierarchical belief

propagation in a real-time stereo implementation to smooth out the largest inconsistencies. We use

a similar algorithm as an optional step in our approach. However, this method is still not sufficient

for covering larger textureless regions.

Color segmentation provides a useful clue for related depth regions, as several authors [9, 33,

47, 50, 56] have noted. Yang etal [56] classify all the pixels in the reference image into three class:

stable, unstable, and occluded pixels. For each color segment, only the stable pixels will be chosen

to fit a 3D plane.

Instead of attempting to infer depth purely from stereo matching, several methods exploit the

planarity implicit to urban environments. Baillard and Zisserman [5] use a 3D line and surrounding

texture to hypothesize planes in an image. Similarly, Werner and Zisserman [55] automatically search

for scene planes in a set of images using point and line correspondences. Since the authors focus

on architectural scenes, they assume most of the reconstruction will be limited to a few dominant

planes, and compensate for deviations from this assumption as a secondary step. Cornelis etal [15]

describe a real-time method for creating simplified urban models that assume all surfaces are either

on a ground plane or a plane orthogonal to it. In contrast to these methods, we place no initial

assumption of planarity on the scene and use the planes as an error compensation method for depths

we can not otherwise determine.

4.3 Window-based Stereo

Given images attached with camera poses the first step in a vision-based reconstruction pipeline

is to calculate depth maps. Within the confines of real-time/near real-time vision-based large scale

3d reconstruction, current state-of-the-art is to use a multi-view stereo matcher that falls within the

category of local methods, i.e. the depth selection for each pixel is only based on local data. A next

logical step given a sequence of such consecutive depth maps is to enforce consistency among the

depth maps using the large overlap existing in their viewpoints, hence being able to improve on their
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Figure 4.1: Visual comparison of the segmentation results using different color segmentation ap-

proaches. From top to bottom: Color images, Graph-Based approach [19], EDISON system [2] and

our approach. Notice that our real-time approach produces similar results as the EDISON system,

which takes around 15 seconds per image.

overall quality by removing outliers and noise. Such a system is described in [4], which we briefly

review here.

The primary part of a multi-view stereo matching module is the plane-sweeping algorithm of

[13, 58]. Given a sequence of consecutive images, say 7 images, the depth map is intended to be
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computed for the central image, denoted the reference image. A set of planes are swept through

space at a number of hypothesized depths. Each plane defines a set of homographies with which

all the non-reference images are warped onto the reference image. The absolute intensity difference

is computed as the cost of the hypothesized depth. The set of images is divided in two halves,

one preceding and one following the reference image. The costs are aggregated by a boxcar filter

and the minimum of the two sums is the cost of the depth hypothesis [31] (this is an effective way

of handling occlusions). By assuming that the cost function can be approximated by a quadratic

function around the minimum, sub-pixel accuracy can be achieved by interpolation. The hypothesis

having the lowest cost may not always be the true depth. This is in most cases due to lack of

texture. Therefore a confidence map is needed to denote how certain we are about each chosen

depth hypothesis.

The next step given the sequence of consecutive depth maps is to enforce consistency among

these and output a new improved set of depth maps. This consistency fusion of the depth maps is

very effective since the same surface points are visible in a large number of frames, which means

that we have multiple depth estimates for each point. Hence using the most consistent estimate

among these enables a large improvement removing outliers and noise. The module that performs

these steps is named ”Stereo fusion”. However even after this step there will still be pixels for which

the depth estimate is unlikely/wrong, so each new depth map is again associated with a confidence

map.

4.4 Plane-fitting Stereo

The Plane-fitting stereo pipeline contains three modules, window-based stereo matching, stereo

consistency fusion and plane-fitting refinement. The first two modules are the same as the window-

based stereo pipeline described in Section 4.3. For the last added module a novel real-time color

segmentation approach is used where within each large segment, a plane is fitted in order to obtain

correct depth values for the weakly-textured regions.

4.4.1 Real-time Color-weighted Color Segmentation

Today, color segmentation is becoming more and more important in stereo computation. For

instance, the top six stereo algorithms [9, 27, 33, 36, 47, 56] reported to the Middlebury benchmark

[42] use color segmentation as a step in their computations. However color segmentation is known

to be non-robust and most of the state-of-the-art segmentation algorithms that perform reasonably

well are very slow. Hence, the color segmentation becomes the bottleneck of the speed performance

of most of the state-of-the-art stereo algorithms.

There exist lots of different color segmentation algorithms, such as watershed segmentation [44],

graph-based segmentation [19], and the mean shift segmentation [14]. One of the current state-of-

the-art is the Edge Detection and Image Segmentation (EDISON) System [2] which integrates
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confidence based edge detection [37] and mean shift based image segmentation [14]. Our goal is to

achieve similar segmentation quality as the EDISON system while running at real-time. We separate

our approach into two steps: Image smoothing and region linking.

To well preserve the edges, we use a color-weighted filter [56, 59] to smoothen the image. The

support from the neighboring pixel q to the pixel under consideration p is weighted as

w(p, q) = exp(−(
4cpq

γc
+
4spq

γs
)), (4.1)

where4cpq is the maximal color difference between p and q measured in each channel of the CIELUV

color space and 4spq is the distance between p and q in the image domain. γc and γs are the

parameters that control weights. To achieve real-time performance, the color space transformation

and the smoothing steps are done in GPU (Graphics Processing Unit), and the range of the three

channels of CIELUV color space is confined in [0, 255]. In our implementation, the parameters are

set experimentally to γc = 2.0 and γs = 10, and the filter is iteratively applied to the color image

five times. The speed performance of the smoothing step is about 15 frame per second with image

resolution 512×384 using NVIDIA GeForce 8800 GTX graphics card.

The second step is to link all the 8-connected pixels based on the color similarity. Assume the

absolute color differences of two 8-connected pixels p, q of the smoothed image is {dL, dU , dV },
then if

max(dL, dU, dV ) < γc, (4.2)

p, q will be joined together. The speed performance of the second step is about 33 frame per second.

We adopted a parallellized approach by using the GPU to smoothen the color image and the CPU to

perform region linking. This approach results in a speed performance of about 15 frame per second.

Figure 4.1 provides the visual comparison of our segmentation approach with two other ap-

proaches. The comparison shows that the graph-based approach is more vulnerable in preserving

details. For instance, the ground on the left side of the column in the first dataset is joined with

the wall if the graph-based approach is performed. However, both the EDISON system and the pro-

posed color-weighted segmentation approach separated them clearly. And also, comparing with the

proposed approach, the graph-based approach is more weakly in handling noises. The white ground

in the first dataset and the white wall in the second dataset are grouped as single region using both

the EDISON system and the proposed approach, however, the graph-based approach fails. By visual

comparison, the main difference of the proposed color-weighted approach and EDISON system is

that ours contains many very small segments. The reason is that we don’t threshold on minimum

segment size. Instead we later in our pipeline never perform plane-fitting for segments which are

too small.

In general, comparing to the other approaches, our color segmentation approach works very

well in terms of quality when run on our large experimental urban dataset. At the same time on

image resolutions of 512×384, our approach runs at real-time while the graph-based approach needs

about 0.5 seconds and the EDISON system takes about 15 seconds using default parameters.

32



www.manaraa.com

4.4.2 Plane-fitting

The goal of plane-fitting is to correct depth values that are believed to be incorrect, for example

depth estimates computed in weakly textured image regions. Such bad estimates are detected by

defining the following confidence map Cc,

Cc(p) = Cf (p)h(
N∑

i=1

h(|D′
i(p)−Dref (p)|, σc), ηc) (4.3)

where

h(a, b) =

{
1 if a >= b

0 else

and Cf is the confidence map after the stereo fusion module. D′
i is one of the N neighbouring depth

maps projected onto the reference depth map, Dref . σc = 0.2 and ηc = N − 1 are thresholds for the

consistency check.

All the pixels in the reference depth map are classified into stable and unstable pixels by setting

a threshold for the confidence map, Cc. If Cc(p) is higher than a threshold, p is classified as a stable

pixel. For each selected segment Sj in the image of the reference depth map, a 3D plane is fitted

robustly using RANSAC [20] on the depth values of the stable pixels only. All the stable pixels

pk ∈ Sj are back projected as 3D points Pk. A set of hypothesis planes are generated by randomly

selecting three points and computing the plane that intersects these. The vector defining the plane

is then normalized and each plane is associated with the following error cost

Eπ(Sj , πj) =
∑

pk∈Sj

min(PT
k πj , ηd), (4.4)

where ηd is a constant to increase robustness by rejecting potential outliers. Finally, the plane

hypothesis with the minimum cost is selected and the depth values of only the unstable pixels are

replaced with the plane-fitted depth values. What should be mentioned is that only large segments

will be fitted with a plane, since a small segment suggests variations in the segments neighborhood,

i.e high texture.

The plane-fitting approach may fail if the number of stable pixels in the segment is too small.

In this case, a bounding box containing the segment is computed and all the stable pixels within

the bounding box will instead be used for the RANSAC plane-fitting.

As a last step in order to remove small differences between plane fitted unstable pixels and the

original stable pixels, an adaptive smoothing is done. The adaptive smoothing kernel is computed

as

K(p + u) =

{
1 if |DΠ(p)−DΠ(p + u)| < σp

0 else

where DΠ is the plane-fitted depth map, and σp = 0.5 is a constant. The size of this kernel is usually

set to something relatively small like 9× 9.
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(a) Reference image. (b) Color segmentation.

(c) Plane-fitted depth map. (d) BP-based depth map.

Figure 4.2: BP-based plane-fitting stereo. Due to strong sun shine, part of the column in (a) is

joined with the ground in color segmentation as shown in (b). In this case, the plane-fitted stereo

will fail. However, after BP refinement, the errors that appear in (c) are removed.

Finally, another pass of the consistency check is applied to the plane-fitted depth maps in order

to update the confidence map. This confidence map is passed on to the mesh generation module

where triangles only get created for depth values that have a high confidence.

4.5 BP-based Plane-fitting Stereo

The BP-based plane-fitting stereo pipeline contains three modules: BP-based stereo matching,

stereo fusion and plane-fitted refinement. the last two modules are the same as the plane-fitting

stereo pipeline described in Section 4.4. The first module is a bit different in that after window-

based stereo matching, a plane-fitting depth map is calculated followed by a loopy belief propagation

refinement, which helps correct the potential errors caused by plane-fitting due to non-robustness of

the color segmentation.

After window-based stereo matching, The pixels are classified into stable pixels and unstable

pixels based on the confidence map calculated from the correlation volume as it is described in
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(a) Reference image. (b) Window-based stereo.

(c) Plane-fitting stereo. (d) BP-based stereo.

Figure 4.3: Visual comparison of depth maps. (b) is the depth map produced by a real-time local

window-based stereo pipeline [4] (c) is the depth map produced by our near real-time plane-fitting

stereo pipeline. Most of the errors in (b), such as the incorrect depth values in the textureless

ground region are removed in (c). (d) is the depth map produced by our BP-based plane-fitting

stereo pipeline. Clearly, the quality of (d) is higher than (c), notice for example how the thin parts

of the shopping cart are preserved.

Section 4.3. For each large segment, the depth values of stable pixels are used to robustly fit a

3D plane to correct the depth values of the unstable pixels. However, due to the non-robustness

of color segmentation, the plane-fitting may fail. To correct the potential errors, GPU hierarchical

loopy belief propagation approach is implemented according to [57]. The new stereo problem is

formulated as a Markov Random Fields (MRF) problem as follow:

P (D, L) =
P (I|D,L)P (D, L)

P (I)
, (4.5)

where D is the depth map that is to be computed, L is the depth discontinuity, I refers to the input

camera images. The occlusion issue is escaped and assumed to have been handled by multi-view

stereo matching. Hierarchical loopy belief propagation algorithm is an efficient solution to the MRF

problem, and [57] proved that by using GPU, the computation time of hierarchical BP can be
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greatly reduced while preserving comparable stereo quality. The loopy belief propagation state the

stereo problem as follows

E(p, d) = ED(p, d) +
∑

q∈N4(p)

ES(q, d), (4.6)

where p is a pixel, d is the depth hypothesis and N4(p) is the 4-connectivity set of p. The smoothness

will be iteratively refined based on the assumption that the world surfaces are piecewise smooth.

E
(i+1)
S,p→t(p, d) = arg min

dp

(ED(p, dp) +
∑

q∈N4(p),q 6=t

E
(i)
S,q→p(q, d) + Φ(dp, d)), (4.7)

Φ(dp, d) = min(λ, |dp − d|), (4.8)

where λ = 6.0 is a constant used to control when the smoothness penalty should stop increasing.

The data term ED will stay unchanged and is defined as:

ED(p, d) = Cm(p)min(Em(p, d), ηm) + (1− Cm(p)) min(β(d−Dπ(p))2, ηπ). (4.9)

Cm(p) ∈ [0, 1] is the confidence map calculated based on the correlation volume. Em is the correlation

volume without boxcar aggregation, and Dπ is the plane-fitted depth map. By integrating Cm, Em

and Dπ, the data term ED depends mostly on the plane-fitted depth map in the low confident areas,

and depends on the correlation volume in the high confident areas. The constant ηm = 50.0 is

used to reject outliers in the correlation volume. β = 2.0 is the rate of increase in the cost caused

by the plane-fitted depth map Dπ and ηπ = 50.0 controls when the cost stops increasing. A good

example about how BP correct the errors introduced by the plane-fitting stereo is shown in Figure

4.2. Due to the strong sun shine, part of the column in (a) is joined together with the ground if

color segmentation is perform as it is shown in (b). In this case, the plane-fitted stereo will fail.

However, after BP refinement, the errors that appear in (c) are removed.

To further improve the stereo quality, after BP refinement, the color-weighted filter designed

in Section 4.4.1 is applied to E to help preserve the depth discontinuity under the assumption

that color discontinuity also introduce the depth discontinuity. Note that after plane-fitting, the

depth values of low confident areas has been corrected, thus the confidence map should be updated

too. The following steps are the same as the plane-fitting stereo pipeline described in Section 4.4:

stereo fusion and another pass of plane-fitting refinement. Figure 4.3 provides the final depth maps

produced by different stereo pipelines for visual comparison. It shows that the BP-based plane-

fitting stereo performs the best regarding both weakly-textured regions and the preservation of thin

structures.

4.6 Experimental Results

For comparison, we run the three stereo pipelines on several urban datasets, and show the depth

maps in Figure 4.4, 4.6 and the screenshots of their 3D models in Figure 4.5 and 4.7. The models

are generated with the high confident pixels in the depth map. Hence if the confidence of a region
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is low, it will leave a hole in the 3D model. By visual comparison, the two proposed stereo pipelines

outperform the window-based stereo pipeline a lot in the weakly-textured areas. For instance, part

of the ground in Figure 4.5 is textureless, which leaves a lot of holes in the first row in Figure 4.5.

However, the two proposed stereo pipelines successfully fill in most of the holes correctly. This is even

more obvious in Figure 4.7, where there are lots of weakly-textured areas. However, there are not

too much visual difference between the Plane-fitting Stereo pipeline and the BP-based Plane-fitting

Stereo pipeline in the 3D models.

(a) (b) (c) (d)

Figure 4.4: Visual comparison of depth maps associated with the 3D models shown below. From left

to right: reference image, window-based stereo,plane-fitting stereo and BP-based plane-fittin. Notice

how the depth estimates for the white textureless door are wrong in (b) and how that produces an

incorrect surface in the corresponding 3D model below. Both (c) and (d) correctly handle the same

door. Also notice that the very large depth errors found in the upper red and the bottom white

textureless regions in (b) are discarded from the window-based 3D model since they otherwise would

do much more harm than good, they are thresholded away based on the confidence map.

Figure 4.5: Screen shot of the 3D models. top: Window-based stereo. middle: Plane-fitting stereo.

bottom: BP-based plane-fitting stereo. Notice how we obtain good surfaces for the textureless

regions where the window-based stereo fails.
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Sometimes the 3D model and the texture may be cheating the eyes. To present better com-

parison, the reference camera image and the depth maps produced at the end of the three stereo

pipelines are shown in Figure 4.4 and 4.6. The depth map produced by the Window-based Stereo

is fatten due to the boxcar aggregation, and the depth values of the weakly-textured areas such as

part of the white door and part of the ground in Figure 4.4 are incorrect. The plane-fitting stereo

helps correct the depth values in the weakly-textured areas but not the fattening errors. Also, in

Figure 4.6, due to incorrect color segmentation, some of the errors still exist in the plane-fitted depth

map. Clearly, all the problems are solved using BP-based plane-fitting stereo as it is shown in the

last column of Figure 4.4 and 4.6, which proves that BP-based plane-fitting stereo has higher stereo

quality than plane-fitting stereo.

In general, the two proposed stereo pipelines outperform the Window-based Stereo, while still

providing good speed performance. With our settings the Window-based Stereo pipeline can process

video data of resolution 512 × 384 and 48 depth hypotheses at about 18 frames per second using

NVIDIA Geforce 8800 GTX graphics card and Intel Xeon (TM) 3.2GHz CPU, the Plane-fitting

Stereo pipeline runs at about 8 frames per second, and the BP-based Plane-fitting Stereo pipeline

runs at about 1 frame per second. Overall the Plane-fitting Stereo pipeline is the best due to its

fast processing time and the ability to still produce good reconstruction accuracy.

4.7 Discussion

In this chapter, we focus on providing fast solutions to reconstruct the weakly-textured regions

that are common in urban environments. The proposed solutions guarantees the local smoothness

by using plane-based depth representation of the textureless segments. We demonstrate that the

proposed solutions outperform the current-state-of-the-art in the weakly-textured areas by showing

reconstructed 3D models and depth maps. We also compare the speed performance and show that our

approach can process video sequences at near real-time speed. Considering both the reconstruction

accuracy and the speed performance we provide good solutions for a large scale urban reconstruction

system.

In our current near real-time plane-fitting stereo pipeline, we don’t consider any smoothness

cost across the neighboring segments. Although we provide an efficient solution with the BP-based

plane-fitting stereo pipeline, it is time consuming. In the future, we are planning to re-formulate

this plane-fitting problem as an energy minimization problem which includes both data term and

smoothness term. The data term associated with a 3D plane hypothesis will be the sum of all the

euclidean distance from the 3D points to the plane, and the smoothness term will be a function

measuring the similarity of the plane hypothesis in the current segment and the plane hypotheses in

all its neighboring segments. Some stereo algorithms [33, 36] are proved to be very good at solving

this energy minimization problem. These methods are far away from being real-time because they

are using mean-shift color segmentation which is time consuming, however this is not an issue using
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(a) (b) (c) (d)

Figure 4.6: Visual comparison of depth maps associated with the 3D models shown below. From

left to right: reference image, window-based stereo,plane-fitting stereo and BP-based plane-fittin.

Notice how the depth estimates for the white textureless wall above the windows and the wall bellow

the roof are wrong in (b) and how that produces an incorrect surface in the corresponding 3D model

below. (c) corrects most of errors in (b). However, due to bad color segmentation, some of the errors

still exist, while (d) removes all the errors completely.

Figure 4.7: Screen shot of the 3D models. top: Window-based stereo. middle: Plane-fitting stereo.

bottom: BP-based plane-fitting stereo.

our real-time segmentation method.
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Chapter 5

Reconstruction from Range images: Spatial-Depth Super Resolution for Range

Images

5.1 Introduction

There exists a variety of range measuring technologies to acquire 3D information about our

world. For example, laser range scanners can provide extremely accurate and dense 3D measurement

over a large working volume [6, 7, 29, 39, 41, 45]. However, most of these high-quality scanners

measure a single point at a time, limiting their applications to static environments only. The options

to capture depth at video rate are rather limited: the main contender–stereo vision–is known to be

quite fragile in practice.

Recently new sensors [1, 3, 49] have been developed to overcome this limitation. By using

extremely faster shutter (on the order of nanosecond), these sensors measure time delay between

transmission of a light pulse and detection of the reflected signal on an entire frame at once. While

the technology is promising, in the current generation, these sensors are either very expensive or

very limited in terms of resolution. For example the Canesta EP DevKit sensors can provide range

images only up to 64× 64. Their applications are therefore limited to background segmentation and

user interface control.

In this chapter we present a framework to substantially enhance the spatial and depth resolution

of low-quality and highly quantized range maps, e.g., those from stereo vision or the Canesta sensor.

Our approach takes advantage of the fact that a registered high-quality texture image can provide

significant information to enhance the raw range map.

Most related to our work is a range-enhanced method by Diebel and Thrun [17], in which a

Markov Random Field (MRF) is first designed based on the low resolution depth maps and high

resolution camera images. The MRF is then solve with the well-known conjugate gradient (CG)

algorithm [40]. This method gives promising spatial resolution enhancement up to 10×. Our

formulation has demonstrated spatial resolution enhancement up to 100×.

Key to our success is the use of an adaptive filter, inspired by several state-of-the-art stereo

algorithms [54, 56, 59]. In essence, we consider that the input range map provides a probabilistic

distribution of depth, from which we can construct a 3D volume of depth probability, typically

referred to as the cost volume in the stereo vision literature. Then we iteratively apply a color-

weighted filter to the cost volume. The output high-resolution range image is produced by taking

the winner-takes-all approach on the weighted cost volume and a sub-pixel refinement afterward.

This simple formulation turns out to be very effective. As demonstrated with a variety of

real-world objects, it can provide not only visually compelling range images up to 100× resolution,

but also a numerically more accurate depth estimate. We have applied our framework to all the
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algorithms reported on the middlebury stereo benchmark site [42]. Our depth-enhanced disparity

maps, when compared to their original counter parts, are superior in overall ranking for each and

every algorithm listed, including those already having sub-pixel disparity refinement.

The chapter is organized as follows: Section 5.2 presents an overview of our super resolution

framework and the details about spatial resolution enhancement using an adaptive color-weighted

filter and depth resolution enhancement by quadric polynomial interpolation. In Section 5.3 we then

discuss how to enhance the depth resolution for general two-view stereo vision problems through

a sub-pixel refinement step. The experimental results are reported in Section 5.4, followed by a

conclusion in Section 5.5.

5.2 Approach

An overview of the framework of the approach is provided in Figure 5.1. First, up-sample the

low-resolution depth map from the range image to the same size as the high-resolution camera image,

save it as D(0). Then follows an iterative refinement module. A cost volume Ci is built based on the

current depth map D(i), then a color-weighted aggregation is performed throughout each slice of the

cost volume to produce the new cost volume CCW
(i) . The refined depth map D(i+1) is generated based

on this cost volume by first selecting the depth hypothesis with the minimal cost and a sub-pixel

estimation afterwards.

5.2.1 Construction and refinement of the cost volume

At first, a coarse cost volume is built based on the current depth map. In order to allow large

depth variations, as the current depth values are not guaranteed to be correct, the cost function

should become constant as the differences become large. One such common function is the truncated

quadric model, where the cost increases quadratically based on the distance between the potential

depth candidate d and the currently selected depth D(i)(y,x)

C(i)(y,x, d) = min(η ∗ L, (d−D(i)(y,x))2) (5.1)

L is the search range, η is a constant. The square difference is selected as the cost function since

we will use quadratic polynomial interpolation for sub-pixel estimation later. This cost function can

help to preserve the sub-pixel accuracy of the input depth map.

A color-weighted aggregation is then applied to each slice of the cost volume based on the

following prior assumptions:

1. World surfaces are piecewise smooth.

2. The pixels with similar colors around a region are likely to have similar depth.

The color-weighted filter was first presented in [59], and then integrated into the stereo algorithm

proposed in [56] which is one of the middlebury top algorithms. The experimental results in
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Figure 5.1: Framework of our post-processing approach. The range image is up-sampled to the

same size as the camera image, and serves as the initial depth map hypothesis. The following is an

iterative refinement process. A cost volume is built according to the current depth map hypothesis.

A color-weighted filter is then applied to the cost volume to handle the fattening problem near depth

discontinuities. A winner-take-all and sub-pixel estimation procedure is used to produce a new depth

map hypothesis, which is fed back into the process.
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both papers show that the color-weighted filter works very well near discontinuities, which is the

main challenge for spatial super-resolution discussed in this chapter. For the smooth areas, after

up-sampling, all the missed sampling areas are filled in correctly by interpolation. However, this

is generally not true for the discontinuous areas. The missed sampling areas are blurred after

up-sampling. But by using the color information provided by the registered camera images, we

demonstrate that it is possible to get sharp/true depth edges for stereo spatial super resolution.

This is the central theme of the chapter.

The color-weighted filter is designed as following:

F (y+u,x+v) = fc(Wc(y,x,u,v))fs(Ws(u,v)), (5.2)

fc(x) = exp(−|x|
γc

),

fs(x) = exp(−|x|
γs

),

Wc(y,x,u,v) =
1
3
(|R(y+u,x+v)−R(y,x)|

+ |G(y+u,x+v)−G(y,x)|
+ |B(y+u,x+v)−B(y,x)|),

Ws(u, v) =
√

u2 + v2.

y, x are the indices of the current pixel in the camera image, and u, v are two variables. R, G, B

are the RGB channels of the camera image. γc and γs are two constants used as the thresholds of

the color difference and the filter size. The color-weighted filter works as soft color segmentation in

the super resolution framework, which aggregates the probabilities of each depth candidates of the

pixels around a region based on the color similarity of the central pixel and its neighbors.

As it is shown in Figure 5.1, the color-weighted filter is iteratively applied to the current cost

volume to construct the color-weighted cost volume, then we search through all the depth hypotheses

and select the one with the minimal cost. Finally, sub-pixel estimation is performed based on the

color-weighted cost volume and the depth hypotheses with the minimal cost.

5.2.2 Sub-pixel Estimation

To reduce the discontinuities caused by the quantization in the depth hypothesis selection pro-

cess, a sub-pixel estimation algorithm is proposed based on quadratic polynomial interpolation. If

the cost function is continuous, the depth with the minimum matching cost can be found. However,

the cost function is discrete in practice. The search range is limited, which results in discontinuous

depth maps. In order to eliminate this effect, we use quadratic polynomial interpolation to approx-

imate the cost function between three discrete depth candidates: d, d− and d+. d is the discrete

depth with the minimal cost, d− = d− 1, and d+ = d + 1.
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(a) Depth maps. (b) Synthesized views.

Figure 5.2: Experimental results with and without sub-pixel refinement. (a) Depth maps generated

with the DoubleBP algorithm [56] reported on the middlebury website. (b) Synthesized views

using (a). First row shows results without sub-pixel refinement, second row shows results with sub-

pixel refinement. Notice that the quantization effect on the man’s face and the background on the

synthesized view before sub-pixel is removed after sub-pixel estimation.

f(x) = ax2 + bx + c, (5.3)

xmin =
−b

2a
, (5.4)

f(xmin) is the minimum of function f(x). Thus, given d, f(d), f(d−) and f(d+), the parameters a

and b of the continuous cost function can be calculated. Thus:

xmin = d− f(d+)− f(d−)
2(f(d+) + f(d−)− 2f(d))

, (5.5)

xmin is the depth with the minimum of the quadric cost function f(x). Figure 5.2 provides a visual

comparison of the depth maps and their synthesized views before and after sub-pixel estimation.
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Notice that the quantization effect on the man’s face and the background on the synthesized view

is removed after sub-pixel estimation.

5.3 Extended depth super resolution with two views

The main difference between one-view super resolution and two-view super resolution is the

construction of the cost volume. In two view case, general stereo matching algorithm can be per-

formed, together with the range image, to provide a more accurate cost volume. At first, The cost

volume is initialized with zero. Then three depth candidates d, d−, d+ are selected according to

the input depth map. d is extracted from the input depth map, d− = d − 1 and d+ = d + 1. To

perform depth enhancement with two views, three slices of matching cost based on each of the three

depth candidates are calculated. The calculation of matching cost is implemented according to the

symmetric color-weighted correlation approach presented in [56]. First, project the pixel in the

reference view to the other view using the depth candidates calculated from the input depth map,

and the matching cost is the pixel dissimilarity of the corresponding pixels. To reduce the noise,

Birchfield and Tomasi’s pixel dissimilarity [8] is used. Second, a symmetric color-weighted filtering

is applied to the cost slices:

Fsymm(y+u,x+v)=F (y+u,x+v)F (y′+u,x′+v), (5.6)

F (y + u,x + v) is the filter defined in Equation 5.3, y, x is the index of the current pixel in the

reference view, and y′, x′ is the index of the corresponding pixel in the other view.

The sub-pixel depth enhancement is performed by a quadratic polynomial interpolation with

the symmetric color-weighted cost volume as it is described in Section 5.2.2. Finally, a box-car filter

(G) is applied to smoothen the depth map with a hit-or-miss scheme:

G(y + u,x + v) =

{
1.0 if |D0(y,x)−D0(y + u,x + v)| < 1

0 else

D0 is the input depth map. The size of the box-car used is relatively small (9x9).

To validate our sub-pixel refinement approach, an off-line stereo benchmark that has the same

scoring scheme as the middlebury benchmark [42] is built. Every result reported on the middlebury

website is used with our sub-pixel refinement approach, and evaluated on the sub-pixel benchmark.

Figure 5.3 shows that our approach is very robust, it works for all the algorithms, even for those

originally having sub-pixel refinement. The completed version of Figure 5.3 is provided in the

supplemental materials, which gives more details about the ranks on different datasets and error

thresholds.
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Algorithms Average Rank

Two Views Single View

Before After Before After

DoubleBP 21.5 5.75 18.42 11.33

AdaptingBP 15.33 6.92 12.58 9.17

C-SemiGlob 11.75 7.25 7.75 5.25

Segm+visib 16.08 9 14.67 11.17

SymBP+occ 25 12 22.42 14.92

SemiGlob 15 12.33 12 9.83

AdaptWeight 29.25 12.42 25.58 14.92

RegionTreeDP 32.75 14 29.75 18.17

GC+occ 25.33 14.42 24 19.08

TensorVoting 24.83 17.67 22.08 16.33

MultiCamGC 28.17 17.83 27 23.08

Layered 34.83 18.08 32.25 25

SegTreeDP 28.33 18.17 26.33 17.42

RealtimeBP 34 18.92 31.42 21.92

CostRelax 23.58 20.17 21.58 21.17

GenModel 22.17 20.83 20.25 17.58

ReliabilityDP 40.17 23.5 37.5 29.5

RealTimeGPU 38.42 24 36.58 24.67

GC 33.67 24.5 32.42 29.25

TreeDP 44 30.5 42.5 36.67

DP 43.92 31.33 42.17 31.17

SSD+MF 46.08 34.75 45.17 41.75

STICA 44.67 35.25 44 35.58

SO 45.17 37.83 43.42 36.75

Infection 44.83 38.75 43.42 38.08

Figure 5.3: Sub-pixel estimation evaluation. The scores on the last four columns are the average

ranks with error threshold 0.5. The scores with bold font are among the top 10 performers. The

entries with blue highlighting are stereo algorithms originally without sub-pixel estimation, the

others are algorithms originally having sub-pixel estimation. The scoring scheme is the same as the

middlebury benchmark [42].
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5.4 Experimental Results

Our experimental system consists of a Canesta EP DevKit camera [1] and a FLEA digital

camera at [12]. The EP DevKit camera can produce range images with size up to 64 × 64 of the

objects in its view, and the FLEA camera can produce color images with resolution up to 1024×768.

These two cameras are placed very close to each other and image registration is achieved by a 3× 3

homographic warp. The warping function is dependent on the average range to the object. A better

setup would be to use an beam-splitter to align the optical axes of both sensors to guarantee image

alignment.

Three main parameters are involved in the experiment, they are η, γc and γs. η is the constant

used in Equation 5.1, it is set to 0.5 experimentally. To allow large depth variations, the cost

function is truncated by η × L, where L is the search range. Two parameters are involved in the

color-weighted filter, they are γc and γs. In this paper, they are both set to 10. A visual explanation

about how these parameters control the shape of the weighting functions in Equation 5.3 is provided

in Figure 5.4. The experimental results show that γc is relatively sensitive, it should be decreased

around the low texture area.

(a) (b)

Figure 5.4: (a) γc ∈ {5, 10, 20, 30}. (b) γs = 10.

5.4.1 Spatial super resolution

To show the power of the iterative color-weighted filtering, a series of intermediate depth maps

are provided in Figure 5.5 in a coarse-to-fine manner architecture.

In Figure 5.5, D0 is the depth map after up-sampling from the low-resolution range image. The

quality of D0 is unacceptable. D1 is the depth map after iteration 1. The quality has been improved

a lot, but the areas around part of the discontinuities are incorrect. D3 is the depth map after

iteration 3, the discontinuities are well detected, and the algorithm has almost converged. D10 is

the depth map after iteration 10. By visual comparison, the difference between D10 and D3 is tiny.

Others experimental results are shown in Figure 5.6. The input depth maps are up-sampled from
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(a) (b) (c) (d) (e)

Figure 5.5: Intermediate results from iterative color-weighted refinement module. (a) Camera image.

(b) The initial depth map (D0). (c) Depth map after one iteration (D1). (d) Depth map after three

iterations (D3). (e) Depth map after ten iterations (D10).

the 64× 64 range images, and the resolution of the output depth maps is 640× 640.

Table 5.1 evaluates the performance of our approach and the MRF approach presented in [17]

on the middlebury datasets on three different scales. On each scale, the depth image is down-sampled

by a factor of 2 gradually. On scale 0, the depth image is the ground truth. By comparing the bad

pixel percentages before and after color-weighted refinement, we show that our approach improves

the stereo quality of all data sets. The MRF approach in [17] also improves the stereo quality, but

the improvement is relatively small compared to our approach. A visual comparison of the depth

maps of the middlebury datasets on Scale 3 are provided in Figure 5.7. Clearly, the results using our

approach have more clean edges than the input depth maps and the results using MRF approach.

For further comparison, Figure 5.8 provides the experimental results of the Cones data set from

scale 1 to scale 4 using the MRF approach and our approach. By visual comparison, our approach

outperforms the MRF approach as the resolution of the range sensor keeps on decreasing. On the

last row in Figure 5.8, we show that even with tiny sensors (23 × 28), we can still produce decent

high-resolution range images.

Algorithms Tsukuba Venus Teddy tsukuba
Scale Scale Scale Scale

1 2 3 1 2 3 1 2 3 1 2 3
Before refinement 2.67 5.18 9.66 0.61 1.34 2.79 2.92 8.64 14.7 3.92 7.85 14.7

MRF approach [17] 2.51 5.12 9.68 0.57 1.24 2.69 2.78 8.33 14.5 3.55 7.52 14.4
Our approach 1.16 2.56 6.95 0.25 0.42 1.19 2.43 5.95 11.5 2.39 4.76 11.0

Table 5.1: Experimental results on the Middlebury datasets. The numbers in the last twelve columns

are the percentages of the bad pixels with error threshold 1.
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(a) (b) (c) (d)

Figure 5.6: Experimental results of depth super resolution. (a) Camera images. (b) Input depth

maps. (c) Refined depth maps. (d) Synthesized views by using (c). The input depth maps are

up-sampled from range image with resolution 64 × 64, and resolution of the refined depth maps is

640× 640. The spatial resolution is enhanced 100×.
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Figure 5.7: Super resolution on Middlebury datasets. From top to bottom: Before refinement, using

MRF approach [17], using our approach.

5.4.2 Sub-pixel estimation with one or two reference image(s)

Besides the enhancement of the spatial resolution of range images, our approach also provides

sub-pixel estimation for general stereo algorithms with either one or two camera image(s). To eval-

uate the performance of our sub-pixel estimation approach, we established an off-line stereo bench-

mark. The scoring scheme is the same as the middlebury benchmark. In our off-line benchmark,

all the algorithms reported to the middlebury benchmark and their sub-pixel refinement results are

evaluated, thus the total number of algorithms evaluated is twice the number on the middlebury

benchmark [42]. Figure 5.3 provides the average ranks for all the algorithms. With either one or

two view(s), we achieve across-the-board improvement for sub-pixel accuracy. The 10 entries with

bold font are the top 10 performers. In two-view case, nine of them are the algorithms with our

sub-pixel refinement approach. All the entries without blue highlighting in Figure 5.3 are average

ranks of those algorithms using its own sub-pixel refinement techniques. The experimental results

show that our sub-pixel estimation approach works for all of these algorithms, however the improve-

ment is naturally a bit smaller than for the cases that originally don’t have any kind of sub-pixel

refinement. A set of synthesized views built from the DoubleBP algorithm [56] are shown in Figure

5.9, providing a visual comparison of the algorithms with and without sub-pixel refinement. The

depth enhancement is obvious. The results shown in column (a) are quantized to discrete number of

planes. After sub-pixel estimation, the quantization effect is removed, as it is shown in column (b).
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(a) Using MRF approach. (b) Using our approach.

Figure 5.8: Super resolution on Cones datasets. From up to bottom: Experimental results on scale 1

(resolution: 187× 225), Experimental results on scale 2 (resolution: 93× 112), Experimental results

on scale 3 (resolution: 46 × 56), Experimental results on scale 4 (resolution: 23 × 28). This figure

shows that, by visual comparison, our approach performs better than the MRF approach as the

resolution of the range sensor continues to drop.

5.5 Conclusion

In this chapter, we present a new post-processing step to enhance the spatial resolution of range

images up to 100x with a registered and potentially high-resolution color image as reference. We have

validated our approach on several real datasets, including the Middlebury data set, demonstrating

that our approach gives clear improvements. In addition, the depth super resolution is extended
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(a) Before. (b) After.

Figure 5.9: Sub-pixel refinement on Middlebury datasets. (a) Synthesized views produced by the

DoubleBP algorithm [56] reported on the Middlebury website. (b) Synthesized views after sub-

pixel refinement. The results shown in column (a) are quantized to discrete number of planes, after

sub-pixel estimation, the quantization effect is removed, as it is shown in column (b).

to two-view case. To evaluate the effectiveness of our depth-enhanced approach, we first built an

off-line stereo benchmark that has the same scoring scheme as the Middlebury benchmark, then tried
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our approach on all the stereo algorithms reported to the Middlebury benchmark. Together with

all the results submitted to Middlebury benchmark, we evaluated all the depth-enhanced results on

the off-line benchmark with different error thresholds, and showed across-the-board improvement in

sub-pixel accuracy. We are hoping to release an on-line sub-pixel benchmark in the near future.
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Chapter 6

Conclusion

In this thesis, an important task in computer vision has been studied : 3D structure recovery

from stereo/range images of a rigid 3D scene. The main contribution is several works on different

algorithm in a general 3D reconstruction framework: from two-view to multi-view stereo, from off-line

to on-line stereo, and from reconstruction from stereo images to reconstruction from low-resolution

range image.

In the scope of reconstruction from stereo images, the algorithms generally perform (subsets

of) the following four steps:

1. matching cost computation;

2. cost (support) aggregation;

3. disparity computation / optimization; and

4. disparity refinement.

The algorithms proposed/studied in this thesis are focused on the last three steps, however the

quality of all of them depends on the how accurate the first step can achieve. The matching cost

computation is the most fundamental step in this field. A lot of approaches can be used to improve

the matching accuracy, and the most obvious ones are: increasing the range of the depth hypotheses,

increasing the image resolution, and taking pictures under better lighting conditions. The first two

approaches are easy to implement, but at the cost of some speed performance. The third approach

involves human interaction, which is not central theme of the thesis.

In general, our methods are usually easy to use and quite efficient, compared with their coun-

terparts in the literature. we proved that the proposed algorithms are the current state-of-the-art

in the scope of either reconstruction accuracy or speed in the same condition. However, the recon-

struction result produced with all the stereo algorithms studied in the current framework won’t be

able to compared against the ground truth, even the resolution of the image and the range of the

depth hypotheses is larger enough. To break through the bottleneck, high level vision task, such as

object recognition should be employed. For instance assume there is a window in the scene, we first

recognize that it is a window, and then fit a plane to it; or say that there is a car, we first classify

it as a car, and then recognize that it is a 2006 Nissan Versa car. We thus query the database

to extract the data of this model, and the ground truth is approaching. The best paper [28] at

CV PR2006 is working in a similar direction. Instead of integrating object recognition for better

3D reconstruction, this paper provides a framework of object detection with early estimation of 3D

geometry.
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